Empirical Likelihood for Estimating Equations with Nonignorably Missing Data.

نویسندگان

  • Niansheng Tang
  • Puying Zhao
  • Hongtu Zhu
چکیده

We develop an empirical likelihood (EL) inference on parameters in generalized estimating equations with nonignorably missing response data. We consider an exponential tilting model for the nonignorably missing mechanism, and propose modified estimating equations by imputing missing data through a kernel regression method. We establish some asymptotic properties of the EL estimators of the unknown parameters under different scenarios. With the use of auxiliary information, the EL estimators are statistically more efficient. Simulation studies are used to assess the finite sample performance of our proposed EL estimators. We apply our EL estimators to investigate a data set on earnings obtained from the New York Social Indicators Survey.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Likelihood for Estimating Equations with Missing Values

We consider an empirical likelihood inference for parameters defined by general estimating equations when some components of the random observations are subject to missingness. As the nature of the estimating equations is wide-ranging, we propose a nonparametric imputation of the missing values from a kernel estimator of the conditional distribution of the missing variable given the always obse...

متن کامل

Semi-Empirical Likelihood Confidence Intervals for the ROC Curve with Missing Data

The receiver operating characteristic (ROC) curve is one of the most commonly used methods to compare the diagnostic performances of two or more laboratory or diagnostic tests. In this thesis, we propose semi-empirical likelihood based confidence intervals for ROC curves of two populations, where one population is parametric while the other one is non-parametric and both populations have missin...

متن کامل

Nonparametric Imputation of Missing Values for Estimating Equation Based Inference

We consider an empirical likelihood inference for parameters defined by general estimating equations when some components of the random observations are subject to missingness. As the nature of the estimating equations is wide ranging, we propose a nonparametric imputation of the missing values from a kernel estimator of the conditional distribution of the missing variable given the always obse...

متن کامل

Non-parametric and semiparametric models for missing covariates in parametric regression Abstracts

s Robustness of covariate modeling for the missing covariate problem in parametric regression is studied under the MAR assumption. For a simple missing covariate pattern, non-parametric likelihood is proposed and is shown to yield a consistent and semiparametrically efficient estimator for the regression parameter. Total robustness is achieved in this situation. For more general missing covaria...

متن کامل

Non-parametric and semiparametric models for missing covariates in parametric regression Abstracts

s Robustness of covariate modeling for the missing covariate problem in parametric regression is studied under the MAR assumption. For a simple missing covariate pattern, non-parametric likelihood is proposed and is shown to yield a consistent and semiparametrically efficient estimator for the regression parameter. Total robustness is achieved in this situation. For more general missing covaria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistica Sinica

دوره 24 2  شماره 

صفحات  -

تاریخ انتشار 2014